Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int Immunopharmacol ; 120: 110365, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2326273

ABSTRACT

The study aimed to investigate the influence of comorbid asthma on the risk for mortality among patients with coronavirus disease 2019 (COVID-19) in the United Kingdom (UK) by utilizing a quantitative meta-analysis. The pooled odds ratio (OR) with 95% confidence interval (CI) was estimated by conducting a random-effects model. Sensitivity analysis, I2 statistic, meta-regression, subgroup analysis, Begg's analysis and Egger's analysis were all implemented. Our results presented that comorbid asthma was significantly related to a decreased risk for COVID-19 mortality in the UK based on 24 eligible studies with 1,209,675 COVID-19 patients (pooled OR = 0.81, 95% CI: 0.71-0.93; I2 = 89.2%, P < 0.01). Coming through further meta-regression to seek the possible cause of heterogeneity, none of elements might be responsible for heterogeneity. A sensitivity analysis proved the stability and reliability of the overall results. Both Begg's analysis (P = 1.000) and Egger's analysis (P = 0.271) manifested that publication bias did not exist. In conclusion, our data demonstrated that COVID-19 patients with comorbid asthma might bear a lower risk for mortality in the UK. Furthermore, routine intervention and treatment of asthma patients with severe acute respiratory syndrome coronavirus 2 infection should be continued in the UK.


Subject(s)
Asthma , COVID-19 , Humans , COVID-19/epidemiology , Reproducibility of Results , Comorbidity , Asthma/epidemiology , United Kingdom/epidemiology
2.
Clin Exp Med ; 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1888899

ABSTRACT

To investigate the relationship between human immunodeficiency virus (HIV) infection and the risk of mortality among coronavirus disease 2019 (COVID-19) patients based on adjusted effect estimate by a quantitative meta-analysis. A random-effects model was used to estimate the pooled effect size (ES) with corresponding 95% confidence interval (CI). I2 statistic, sensitivity analysis, Begg's test, meta-regression and subgroup analyses were also conducted. This meta-analysis presented that HIV infection was associated with a significantly higher risk of COVID-19 mortality based on 40 studies reporting risk factors-adjusted effects with 131,907,981 cases (pooled ES 1.43, 95% CI 1.25-1.63). Subgroup analyses by male proportion and setting yielded consistent results on the significant association between HIV infection and the increased risk of COVID-19 mortality. Allowing for the existence of heterogeneity, further meta-regression and subgroup analyses were conducted to seek the possible source of heterogeneity. None of factors might be possible reasons for heterogeneity in the further analyses. Sensitivity analysis indicated the robustness of this meta-analysis. The Begg's test manifested that there was no publication bias (P = 0.2734). Our findings demonstrated that HIV infection was independently associated with a significantly increased risk of mortality in COVID-19 patients. Further well-designed studies based on prospective study estimates are warranted to confirm our findings.

3.
Neurol Sci ; 43(7): 4049-4059, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1756822

ABSTRACT

OBJECTIVE: To investigate the association between stroke and the risk for mortality among coronavirus disease 2019 (COVID-19) patients. METHODS: We performed systematic searches through electronic databases including PubMed, Embase, Scopus, and Web of Science to identify potential articles reporting adjusted effect estimates on the association of stroke with COVID-19-related mortality. To estimate pooled effects, the random-effects model was applied. Subgroup analyses and meta-regression were performed to explore the possible sources of heterogeneity. The stability of the results was assessed by sensitivity analysis. Publication bias was evaluated by Begg's test and Egger's test. RESULTS: This meta-analysis included 47 studies involving 7,267,055 patients. The stroke was associated with higher COVID-19 mortality (pooled effect = 1.30, 95% confidence interval (CI): 1.16-1.44; I2 = 89%, P < 0.01; random-effects model). Subgroup analyses yielded consistent results among area, age, proportion of males, setting, cases, effect type, and proportion of severe COVID-19 cases. Statistical heterogeneity might result from the different effect type according to the meta-regression (P = 0.0105). Sensitivity analysis suggested that our results were stable and robust. Both Begg's test and Egger's test indicated that potential publication bias did not exist. CONCLUSION: Stroke was independently associated with a significantly increased risk for mortality in COVID-19 patients.


Subject(s)
COVID-19 , Stroke , Humans , Male , Stroke/complications
6.
Int Immunopharmacol ; 102: 108390, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525826

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the impact of asthma on the risk for mortality among coronavirus disease 2019 (COVID-19) patients in the United States by a quantitative meta-analysis. METHODS: A random-effects model was used to estimate the pooled odds ratio (OR) with corresponding 95% confidence interval (CI). I2 statistic, sensitivity analysis, Begg's test, meta-regression and subgroup analyses were also performed. RESULTS: The data based on 56 studies with 426,261 COVID-19 patients showed that there was a statistically significant association between pre-existing asthma and the reduced risk for COVID-19 mortality in the United States (OR: 0.82, 95% CI: 0.74-0.91). Subgroup analyses by age, male proportion, sample size, study design and setting demonstrated that pre-existing asthma was associated with a significantly reduced risk for COVID-19 mortality among studies with age ≥ 60 years old (OR: 0.79, 95% CI: 0.72-0.87), male proportion ≥ 55% (OR: 0.79, 95% CI: 0.72-0.87), male proportion < 55% (OR: 0.81, 95% CI: 0.69-0.95), sample sizes ≥ 700 cases (OR: 0.80, 95% CI: 0.71-0.91), retrospective study/case series (OR: 0.82, 95% CI: 0.75-0.89), prospective study (OR: 0.83, 95% CI: 0.70-0.98) and hospitalized patients (OR: 0.82, 95% CI: 0.74-0.91). Meta-regression did reveal none of factors mentioned above were possible reasons of heterogeneity. Sensitivity analysis indicated the robustness of our findings. No publication bias was detected in Begg's test (P = 0.4538). CONCLUSION: Our findings demonstrated pre-existing asthma was significantly associated with a reduced risk for COVID-19 mortality in the United States.


Subject(s)
Asthma/epidemiology , COVID-19/mortality , Asthma/drug therapy , Asthma/immunology , COVID-19/immunology , COVID-19/virology , Humans , Prevalence , Prospective Studies , Protective Factors , Retrospective Studies , SARS-CoV-2/immunology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL